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Abstract – Nonlinear force driven coupled vertical
and torsional vibrations of suspension bridges, when the
frequency of an external force is approaching one of the
natural frequencies of the suspension system, which, in its
turn, undergoes the conditions of the one-to-one internal
resonance, are investigated. The method of multiple time
scales is used as the method of solution. The damping
features are described by the fractional derivative, which
is interpreted as the fractional power of the differentiation
operator. The influence of the fractional parameters (orders
of fractional derivatives) on the motion of the suspension
bridge model is investigated.
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I. INTRODUCTION

The experimental data obtained in [1] during ambient
vibration studies of the Golden Gate Bridge show that dif-
ferent vibrational modes feature different amplitude damp-
ing factors, and the order of smallness of these coefficients
tells about low damping capacity of suspension combined
systems, resulting in prolonged energy transfer from one
partial subsystem to another. Besides, as natural frequen-
cies of vibrations increase, the corresponding damping ra-
tios decrease.

Nonlinear free damped vibrations of suspension
bridges in the cases of the one-to-one internal resonance
(when the natural frequency of a certain mode of verti-
cal vibrations is close to the natural frequency of a certain
mode of torsional vibrations) and the two-to-one internal
resonance (when one natural frequency is nearly twice as
large as another natural frequency) have been examined in
[2] when damping features of the system are prescribed
by the first derivative of the displacement with respect to
time. In this study, the equations of motion due to Abdel-
Ghaffar and Rubin [3] were modified by adding damping
terms, and then solved by the method of multiple scales.

∗Some of the results had been presented at the 7th WSEAS Inter-
national Conference on Continuum Mechanics (CM’12), Kos Island,
Greece, July 14–17, 2012. This research was supported by the joint Grant
from the Russian Foundation for Basic Research No. 10-01-92004-HHC-a
and the National Science Council of Taiwan No. RP10E02.

It has been shown that for the both types of the internal
resonance the damping coefficient does not depend on the
natural frequency of vibrations, but this result is in conflict
with the experimental data presented in [1].

To lead the theoretical investigations in line with the
experiment, fractional derivatives were introduced in [4]
for describing the processes of internal friction proceed-
ing in suspension combined systems at nonlinear free vi-
brations. The nonlinear suspension bridge model put for-
ward allows one to obtain the damping coefficient depen-
dent on the natural frequency of vibrations. The model sug-
gested in [4] has been generalized in [5] by using two dif-
ferent fractional parameters for analyzing vertical and tor-
sional modes of nonlinear damped vibrations of suspension
bridges.

In the present paper, the model described in [5] is used
for investigating nonlinear forced vibrations of suspension
bridges for the case when only two interacting modes pre-
dominate in the vibrational process, i.e., when the fre-
quency of an external force is approaching one of the natu-
ral frequencies of the suspension system, which, in its turn,
undergoes the conditions of the one-to-one internal reso-
nance. The influence of the fractional parameters (orders
of the fractional derivatives) on the motion of the suspen-
sion bridge model is investigated.

Before we proceed to the detail analysis of the given
problem, it should be emphasized following Lacarbonara
[6] that “within the framework of analytical techniques,
non-linear vibrations of continuous (distributed-parameter)
systems can be studied either by attacking directly the
original partial-differential equations and boundary condi-
tions with a reduction method (e.g., the method of multi-
ple scales) or by discretizing the system, first, and, then,
by constructing, via a reduction method, approximations
of the obtained reduced-order systems. With the first ap-
proach (direct treatment), the reduction procedure acts on
the temporal dependence of the system without any a pri-
ori assumption of the form of the solution. With space dis-
cretization, the spatial condensation, also referred to as sys-
tem order reduction, achieved by means of one of the many
versions of the method of weighted residuals, is a crucial
step. It is a common practice to project via the standard or
“flat” Galerkin procedure the original infinite-dimensional
non- linear system on to a basis forming a complete set
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of functions usually consisting of the eigenfunctions of the
associated linearized system when the boundary conditions
are homogeneous. Then, truncation to a finite number of
basis functions generates classical low-order models.”

After the publication of this excellent work [6],
wherein it has been shown “that the approximate solutions
obtained with the direct treatment, the full-basis Galerkin
discretization, and the rectified Galerkin procedure are
equivalent either in the case of no internal resonances or in
the case of a sub-harmonically excited two-to-one internal
resonance”, there was a discussion of these approaches be-
tween the author of [6] and [7] and the supporter of the di-
rect perturbation technique [8], who wrote previously that
“discretizing the nonlinear partial differential equations of
vibration problems and then solving the resulting ordinary
differential equations by perturbation techniques is a quite
common method, the discretization process simplifies the
equations much and the ordinary differential equations are
easier to handle. However the process may lead to inaccu-
rate results in the case of quadratic and cubic nonlineari-
ties” [9].

In order to show that the approximate displacement
fields obtained with the three methods are equivalent,
Lacarbonara [6] has shown that “the complex-valued am-
plitude of the only excited mode or the amplitudes of the
interacting modes are the same regardless of the method
employed and the higher-order spatial corrections due to
the non-linearities are the same”. The authors of this paper
agree completely with the opinion and the results of Lacar-
bonara [6], [7].

In the given paper it will be shown that the applica-
tion of the method of multiple time scales directly to the
nonlinear partial integro-differential equations of suspen-
sion bridge involving conventional damping and vertical
force term, as it was carried out in [10], has not clarify
so many advantages as it was claimed by the authors of
[10]. The main drawback of the model used in [10] is
the employment of the ordinary first-order time-derivatives
of displacements for evaluating the damping features of
the suspension bridges. The authors have not even men-
tioned that this approach for damping inclusion had been
previously implemented in [2]. Moreover, application of
the method of multiple time scales directly to the partial
integro-differential equations of suspension bridges results
in solving separately differential equations for defining the
symmetric and asymmetric mode shapes of vertical and
torsional vibrations on each level of solution approxima-
tion, what is inconvenient in engineering applications. The
solution for eigenfunctions has been carried out only for
the first order of approximation, while for the next level
of approximation the authors of [10] wrote the following:
“However, the transcendental equations yielding the solu-
tion functions for the symmetric modes at this order are
very complicated. Therefore we solved the functions at
this order only for the asymmetric modes.” It has been

also claimed in this paper that the coefficients arised in
the solvability conditions depend “on the converged mode
functions and hence more accurate numerical values can be
obtained compared to the discretization perturbation tech-
nique” [10].

Commenting this, we could follow Lacarbonara [6] re-
ferring to the paper by Pakdemirli and Boyaci [11]: “How-
ever, in their analysis, one of the fundamental results was
postulated instead of proved”, since this could be con-
cerned with the paper [10] as well.

II. PROBLEM FORMULATION

To analyze the forced damped vibrations of suspen-
sion bridges we will use its classical scheme involving a
bisymmetrical thin-walled stiffening girder connected with
two suspended cables by virtue of vertical suspensions [5].
The cables are thrown over the pilons and are tensioned
by anchor mechanisms. The suspensions are considered as
inextensible and uniformly distributed along the stiffening
girder. The cables are parabolic, and the contour of the
girder’s cross-section is underformable. It is assumed that
the girder’s contour translates as a rigid body vertically (in
the y-axis direction) on the value of η(z, t) and rotates with
respect to the girder’s axis (the z-axis) through the angle of
ϕ(z, t) (Fig. 1). The origin of the frame of references is in
the center of gravity of the cross section.

It is known for suspension bridges [3], [12] that some
natural modes belonging to different types of vibrations
could be coupled with each other, i.e., the excitation of one
natural mode gives rise to another one. Two modes interact
more often that not, although the possibility for interaction
of a greater number of modes is not ruled out.

Below we consider the case when only two modes pre-
dominate in the vibrational process, namely: the vertical
n-th mode with linear natural frequency ω0n, and the tor-
sional m-th mode with the natural frequency Ω0m. Under
such an assumption the functions η(z, t) and ϕ(z, t) could
be approximately defined as (using the eigenbase of the as-
sociated linear undamped unforced problem)

η(z, t) ∼ vn(z)x1n(t), ϕ(z, t) ∼ Θm(z)x2m(t), (1)

where x1n(t) and x2m(t) are the generalized displace-
ments, and vn(z) and Θm(z) are natural shapes of the two
interacting modes of vibrations.

When the harmonic force F = F̂ cos(ωF t) is applied
at the center of the suspension bridge, then the equations of
its forced vibrations are written in the dimensionless form
as (what is the immediate generalization of the approach
proposed in [5] by adding the external vertical excitation
with amplitude F̂ = const and frequency ωF )

ẍ1n + ω2
0nx1n + βDγ1

0+x1n + an11x
2
1n + anm22 x

2
2m

+(bn11x
2
1n + bnm22 x

2
2m)x1n = F̂ cos(ωF t),

(2)
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Fig.1 Scheme of a suspension bridge

ẍ2m + Ω2
0mx2m + βDγ2

0+x2m + anm12 x1nx2m

+(cnm11 x
2
1n + cm22x

2
2m)x2m = 0,

where aij , bii, and cii (i = 1, 2, j = 2) are certain dimen-
sionless coefficients which are defined in [3] (subsequently
the indices n and m are omitted for ease of presentation),
dots denote differentiation with respect to time, the terms
βDγ1

0+x1 and βDγ2
0+x2 characterize inelastic reaction of the

system, β is the viscosity coefficient, the fractional deriva-
tive Dγ

0+x ( γ = γ1 or γ2) is defined as follows [13]

Dγ
0+x =

d

dt

∫ t

0

x(t− t′)dt′

Γ(1− γ)t′γ
(0 < γ ≤ 1), (3)

γ is the order of the fractional derivative (fractional param-
eter), and Γ(1− γ) is the Gamma-function.

Let us consider the case of the one-to-one internal res-
onance, as well as suppose that the frequency of the exter-
nal force is close to the natural frequency of the interacting
modes, i.e.,

ω0 ≈ Ω0 ≈ ωF . (4)

Note that the influence of the detuning parameter char-
acterizing the small difference in magnitudes of the natu-
ral frequencies ω0 and Ω0 has been investigated in [4] and
[12].

Since for finding the solution of Eqs. (2) we will use
the method of multiple time scales, where the functions
e±iωt are utilized as the main harmonic functions, then in
order to carry out the calculations the following formulas
will be in demand [14]

Dγ
0+e
±iωt = Dγ

+e
±iωt +

sinπγ
π

∫ ∞
0

uγe−utdu

u± iω
, (5)

Dγ
+e
±iωt = (±iω)γe±iωt, (6)

where Dγ
+ is obtained from (3) changing the low limit to

−∞.
It has been shown in [15] and [16] that the second term

in formula (5) does not produce secular terms in the method
of multiple time scales under the limitation of the zero- and
first-order approximations. In other words, this term could

be neglected in further consideration, and it is possible to
use the approximate formula

Dγ
0+e
±iωt ≈ Dγ

+e
±iωt. (7)

If we take into account formula (5.82) from [13]

Dγ
+e
±iωt =

(
d

dt

)γ
e±iωt, (8)

then from the combination of (7) and (8) it follows the re-
lationship

Dγ
0+e
±iωt ≈

(
d

dt

)γ
e±iωt, (9)

which will be used in further calculations.

III. METHOD OF SOLUTION

We will seek the solution for two cases: (1) β = εµ and
that F̂ = ε2f , and (2) β = ε2µ and that F̂ = ε3f . In these
cases, an approximate solution of equations (2) for small
amplitudes weakly varying with time can be represented
by an expansion in terms of different time scales

x1(t) = εx11(T0, T1, T2, . . .) + ε2x12(T0, T1, T2, . . .)

+ε3x13(T0, T1, T2, . . .) + . . .

(10)

x2(t) = εx21(T0, T1, T2, . . .) + ε2x22(T0, T1, T2, . . .)

+ε3x23(T0, T1, T2, . . .) + . . .

where Tn = εnt (n = 0, 1, 2, . . .) are new independent
variables, ε is a small parameter which is of the same or-
der of magnitude as the amplitudes, and µ and f are finite
values. Here, T0 = t is a fast scale, characterizing motions
with the natural frequencies ω0 and Ω0, while T1 = εt and
T2 = ε2t are slow scales, characterizing the modulations
of the amplitudes and phases.

Considering that

d/dt = D0 + εD1 + ε2D2 + . . . (11a)

d2/dt2 = D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D2) + . . . (11b)
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as well as following [4] that

(d/dt)γ = (D0 + εD1 + ε2D2 + . . .)γ (12)

= Dγ
+ + εγDγ−1

+ D1 +
1
2
ε2γ(γ − 1)Dγ−2

+ D2
1 + . . .

where Dn = ∂/∂Tn,

Dγ−n
+ x =

d

dt

∫ t

−∞

x(t− t′)dt′

Γ(1− γ + n)t′γ−n
(n = 0, 1, 2, ...)

substituting (10) into (2), and equating the coefficients at
like powers of ε to zero, we obtain to order ε:

D2
0x11 + ω2

0x11 = 0, (13a)

D2
0x21 + Ω2

0x21 = 0; (13b)

to order ε2:

D2
0x12 + ω2

0x12 = −2D0D1x11 − µ(2− k)Dγ1
+ x11

−a11x
2
11 − a22x

2
21 + (2− k)f cos(ω0T0), (14a)

D2
0x22 + Ω2

0x22 = −2D0D1x21 − µ(2− k)Dγ2
+ x21

−a12x11x21; (14b)

to order ε3:

D2
0x13 + ω2

0x13 = −2D0D1x12 − (D2
1 + 2D0D2)x11

−µ(2− k)Dγ1
+ x12 − µ(2− k)γ1D

γ1−1
+ D1x11

−µ(k − 1)Dγ1
+ x11 − 2a11x11x12 − 2a22x21x22

−b11x
3
11 − b22x

2
21x11 + (k − 1)f cos(ω0T0), (15a)

D2
0x23 + Ω2

0x23 = −2D0D1x22 − (D2
1 + 2D0D2)x21

−µ(2− k)Dγ2
+ x22 − µ(2− k)γ2D

γ2−1
+ D1x21

−µ(k − 1)Dγ2
+ x21 − a12(x11x22 + x12x21)

−c11x
2
11x21 − c22x

3
21. (15b)

At k = 1 and k = 2, we obtain governing equations
for the first and second cases, respectively.

Integrating equations (13a) and (13b) yields

x11 = A1(T1, T2)eiω0T0 + Ā1(T1, T2)e−iω0T0 , (16a)

x21 = A2(T1, T2)eiΩ0T0 + Ā2(T1, T2)e−iΩ0T0 , (16b)

where A1 and A2 are unknown complex functions, and Ā1

and Ā2 are the complex conjugates of A1 and A2, respec-
tively.

In order to integrate the sets of equations (14) and (15),
it is necessary to consider each case separately.

A. The case k = 1

Now let us substitute (16) into the right-hand sides of
equations (14) putting there k = 1, then gather all terms
standing at eiω0T0 and e−iω0T0 with due account for (4)
and vanish them in order to exclude secular terms. As a
result we obtain [17]

D1A1 +
1
2
µ(iω0)γ1−1A1 −

f

4iω0
= 0, (17a)

D1A2 +
1
2
µ(iω0)γ2−1A2 = 0, (17b)

D2
0x12 + ω2

0x12 = −
(
a11A

2
1 + a22A

2
2

)
e2iω0T0

−a11A1Ā1 − a22A2Ā2 + cc, (18a)

D2
0x22 + ω2

0x22 = −a12A1A2e
2iω0T0

−a12A1Ā2 + cc, (18b)

where cc is the complex conjugate part to the preceding
terms.

Integrating Eqs. (17), we find

A1(T1, T2) = a1(T2) exp
[
−1

2
µ(iω0)γ1−1T1

]

+
f

2µ(iω0)γ1
, (19a)

A2(T1, T2) = a2(T2) exp
[
−1

2
µ(iω0)γ2−1T1

]
. (19b)

Substituting (19) in Eqs. (18) and integrating, we ob-
tain the expressions for x12 and x22. Then substituting
found x12 and x22 in Eqs. (15a) and (15b) and using the
standard procedure for eliminating the secular terms, we
have

D2a1 +
[

1
8
µ2(iω0)2γ1−3(1− 2γ1)

+
1
4
i
f2(a2

11 − 3b11)
µ2ω2γ1+1

0

e−2πiγ1

]
a1 = 0, (20a)

D2a2 +
[

1
8
µ2(iω0)2γ2−3(1− 2γ2)

+
1
4
i
f2(a11a12 − 2c11 − 1

3 a
2
12ω
−2
0 )

µ2ω2γ1+1
0

e−2πiγ1

]
a2 = 0.

(20b)
Integrating Eqs. (20) yields

a1 = a0
1 exp

{
T2

[
−1

8
µ2(1− 2γ1)(iω0)2γ1−3

−1
4
f2(a2

11 − 3b11)
µ2ω2γ1+1

0

(i cos 2πγ1 + sin 2πγ1)

]}
, (21a)
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a2 = a0
2 exp

{
T2

[
−1

8
µ2(1− 2γ2)(iω0)2γ2−3

−1
4
f2(a11a12 − 2c11 − 1

3 a
2
12ω
−2
0 )

µ2ω2γ1+1
0

× (i cos 2πγ1 + sin 2πγ1)
]}
, (21b)

where a0
1 and a0

2 are arbitrary constants.
Considering formulas (10), (16), (19), and (21), we fi-

nally obtain

x1 = ε
[
2a0

1e
−α1t cos Ω1t

+
f

µωγ10

cos
(
ω0t−

π

2
γ1

)]
+O(ε2), (22a)

x2 = ε2a0
2e
−α2t cos Ω2t+O(ε2), (22b)

where
α1 =

1
2
εµωγ1−1

0 sin
(πγ1

2

)
×
[
1 +

1
2
εµ(2γ1 − 1)ωγ1−2

0 cos
(πγ1

2

)]
−1

4
ε2 f

2(a2
11 − 3b11)

µ2ω2γ1+1
0

sin(2πγ1),

Ω1 = ω0

[
1 +

1
2
εµωγ1−2

0 cos
(πγ1

2

)
+

1
8
ε2µ2(2γ1 − 1)ω2(γ1−2)

0 cos (πγ1)

−1
4
ε2 f

2(a2
11 − 3b11)

µ2ω
2(γ1+1)
0

cos(2πγ1)

]
,

α2 =
1
2
εµωγ2−1

0 sin
(πγ2

2

)
×
[
1 +

1
2
εµ(2γ2 − 1)ωγ2−2

0 cos
(πγ2

2

)]
−1

4
ε2 f

2(a11a12 − 2c11 − 1
3 a

2
12ω
−2
0 )

µ2ω2γ1+1
0

sin(2πγ1),

Ω2 = ω0

[
1 +

1
2
εµωγ2−2

0 cos
(πγ2

2

)
+

1
8
ε2µ2(2γ2 − 1)ω2(γ2−2)

0 cos (πγ2)

−1
4
ε2 f

2(a11a12 − 2c11 − 1
3 a

2
12ω
−2
0 )

µ2ω
2(γ1+1)
0

cos(2πγ1)

]
.

Reference to the found analytical solution (22) shows
that it involves two parts: the first corresponds to the damp-
ing vibrations with damping coefficients and nonlinear fre-
quencies dependent on the fractional parameters and de-
scribes the transient process, while the second one is non-
damping in character and describes forced vibrations with
the frequency of the exciting force and with the phase dif-
ference depending on the fractional parameter.

B. The case k = 2

Let us substitute relations (16) in the right-hand parts
of equations (14) at k = 2. Eliminating secular terms and
integrating the equations obtained, we have

D1A1 = D1A2 = 0, (23)

x12 =
1

3ω2
0

A2
1e

2iω0T0 +
a22

3ω2
0

A2
2e

2iω0T0

−
(
a11A1Ā1 + a22A2Ā2

)
ω2

0 + cc, (24a)

x22 =
a12

3ω2
0

A1A2e
2iω0T0 − a12

ω2
0

A1Ā2 + cc. (24b)

From (23) it follows that the functions A1 and A2 are
T1-independent.

Substituting then (16) and (24) in equations (15) and
utilizing the standard procedure for eliminating secular
terms, we obtain

−iD2A1 −
1
2
µω−1

0 (iω0)γ1A1 − λ1A
2
1Ā1 − λ2A1A2Ā2

+
1
4

Γ1Ā1A
2
2 +

1
4
f

ω0
= 0, (25a)

−iD2A2 −
1
2
µω−1

0 (iω0)γ2A2 − λ3A1Ā1A2 − λ4A
2
2Ā2

+
1
4

Γ2A
2
1Ā2 = 0, (25b)

where the coefficients λi and Γj (i = 1, 2, 3, 4 and j =
1, 2) are presented in [3], [12].

Now we multiply (25a) and (25b) by Ā1 and Ā2, re-
spectively, and find their complex conjugates. Adding ev-
ery pair of the mutually adjoint equations and subtracting
one from another, and after all manipulations representing
the functions A1 and A2 in their polar form, i.e.,

A1(T2) = a1(T2) exp [iϕ1(T2)] ,

A2(T2) = a2(T2) exp [iϕ2(T2)] ,

as a result we obtain the modulation equations

ȧ1 +
1
2
s1a1 −

1
4

Γ1a1a
2
2 sin δ +

1
4
fω−1

0 sinϕ1 = 0,

(26a)

ȧ2 +
1
2
s2a2 +

1
4

Γ2a
2
1a2 sin δ = 0, (26b)

ϕ̇1 −
1
2
ψ1 − λ1a

2
1 − λ2a

2
2 +

1
4

Γ1a
2
2 cos δ

+
1
4
fω−1

0 a−1
1 cosϕ1 = 0, (26c)

ϕ̇2 −
1
2
ψ2 − λ3a

2
1 − λ4a

2
2 +

1
4

Γ2a
2
1 cos δ = 0, (26d)

where δ = 2(ϕ2 − ϕ1), a dot denotes differentiation with
respect to T2, and

ψ1 = µωγ1−1
0 cos

(
1
2
πγ1

)
, ψ2 = µωγ2−1

0 cos
(

1
2
πγ2

)
,
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s1 = µωγ1−1
0 sin

(
1
2
πγ1

)
, s2 = µωγ2−1

0 sin
(

1
2
πγ2

)
.

Note that when γ1 = γ2 = 1, the solvability conditions
(25) and modulation equations (26) coincide with those
presented in [10] within an accuracy of notations and co-
efficients, if one puts detuning parameters equal to zero in
solvability conditions (28) and modulation equations (31)-
(33) of [10], which were solved numerically.

The system of equations (26) could be rewritten in an-
other form if we suppose that the values a1 and a2 are the
functions in ϕ1 and ϕ2, i.e.,

a1 = a1 [ϕ1(T2), ϕ2(T2)] , a2 = a2 [ϕ1(T2), ϕ2(T2)] .
(27)

Differentiating (27) with respect to T2 yields

ȧ1 =
∂a1

∂ϕ1
ϕ̇1 +

∂a1

∂ϕ2
ϕ̇2, (28a)

ȧ2 =
∂a2

∂ϕ1
ϕ̇1 +

∂a2

∂ϕ2
ϕ̇2. (28b)

Using relationships (26a)-(26d) for ȧ1, ȧ2, ϕ̇1, and ϕ̇2,
let us rewrite equations (28) as

∂a1

∂ϕ1
B1(a1, a2, ϕ1, ϕ2) +

∂a1

∂ϕ2
B2(a1, a2, ϕ1, ϕ2)

= f1(a1, a2, ϕ1, ϕ2), (29a)

∂a2

∂ϕ1
B1(a1, a2, ϕ1, ϕ2) +

∂a2

∂ϕ2
B2(a1, a2, ϕ1, ϕ2)

= f2(a1, a2, ϕ1, ϕ2), (29b)

where

B1(a1, a2, ϕ1, ϕ2) =
1
2
ψ1 + λ1a

2
1 + λ2a

2
2

−1
4

Γ1a
2
2 cos δ − 1

4
fω−1

0 a−1
1 cosϕ1, (29c)

B2(a1, a2, ϕ1, ϕ2) =
1
2
ψ2 + λ3a

2
1 + λ4a

2
2

−1
4

Γ2a
2
1 cos δ, (29d)

f1(a1, a2, ϕ1, ϕ2) = −1
2
s1a1 +

1
4

Γ1a1a
2
2 sin δ

−1
4
fω−1

0 sinϕ1, (29e)

f2(a1, a2, ϕ1, ϕ2) = −1
2
s2a2 −

1
4

Γ2a
2
1a2 sin δ. (29f)

The characteristics of equations (29a) and (29b) have
the form

B1dϕ2 −B2dϕ1 = 0, (30)

while equations along the characteristics are written as

f1dϕ2 −B2da1 = 0, (31a)

or, what is the same thing,

B1da1 − f1dϕ1 = 0, (31b)

and
f2dϕ2 −B2da2 = 0, (32a)

or, what is the same thing,

B1da2 − f2dϕ1 = 0. (32b)

From relationships (30), (31b), and (32b) we find

dϕ2

dϕ1
=
B2

B1
, (33a)

da1

dϕ1
=

f1

B1
, (33b)

da1

dϕ2
=

f1

B2
, (33c)

da2

dϕ1
=

f2

B1
, (33d)

da2

dϕ2
=

f2

B2
. (33e)

From equations (33b), (33d), and (33c), (33e) it fol-
lows that

da2
1

dϕ1
=

2
B1

f1a1, (34a)

da2
2

dϕ1
=

2
B1

f2a2, (34b)

da2
1

dϕ2
=

2
B2

f1a1, (34c)

da2
2

dϕ2
=

2
B2

f2a2. (34d)

It is convenient to rewrite equations (33a) and (33c), as
well as (33b) and (33d) in the following form:

da2
1

dδ
=

f1a1

B2 −B1
, (34e)

da2
2

dδ
=

f2a2

B2 −B1
. (34f)

Multiplying (34a) by Γ2 and (34b) by Γ1 and adding
the obtained relationships, we find

d

dϕ1

(
Γ2a

2
1 + Γ1a

2
2

)
=

2
B1

(Γ2f1a1 + Γ1f2a2) . (35a)

Carrying out the same procedure for equations (34c)
and (34d) yields

d

dϕ2

(
Γ2a

2
1 + Γ1a

2
2

)
=

2
B2

(Γ2f1a1 + Γ1f2a2) . (35b)

Rewriting equations (35a) and (35b) in the form

B2d
(
Γ2a

2
1 + Γ1a

2
2

)
= 2 (Γ2f1a1 + Γ1f2a2) dϕ2, (36a)
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B1d
(
Γ2a

2
1 + Γ1a

2
2

)
= 2 (Γ2f1a1 + Γ1f2a2) dϕ1, (36b)

and subtracting (36b) from (36a), we obtain

d

dδ

(
Γ2a

2
1 + Γ1a

2
2

)
=

Γ2f1a1 + Γ1f2a2

B2 −B1
. (37)

Introducing the value ξ according to the formula

ξ =
Γ2a

2
1

Γ2a2
1 + Γ1a2

2

(38)

and considering (34e), let us rewrite equation (37) in the
form

dξ

dδ
=

Γ1Γ2a1a2(a2f1 − a1f2)

(B2 −B1) (Γ2a2
1 + Γ1a2

2)2 . (39)

C. The case of free damped vibrations at γ1 = γ2 = γ

In order to consider the case of free damped vibrations,
we put f = 0 and suppose that γ1 = γ2 = γ. Then s1 =
s2 = s and ψ1 = ψ2 = ψ, and it is possible to find the
first integral of the set of equations (29). To show this,
we introduce the energy of the mechanical system under
consideration

E = Γ2a
2
1 + Γ1a

2
2. (40)

Considering (29e) and (29f), we rewrite (35a) in the
form

dE

dϕ1
= − s

B1
E. (41)

Integrating (41) and considering that B1 = dϕ1/dT2

yields
E = E0e

−sT2 , (42)

where E0 is the initial energy of the system.
From (40) and (42) it follows that

a2
1 = Γ−1

2 E0ξe
−sT2 , (43a)

a2
2 = Γ−1

1 E0(1− ξ)e−sT2 , (43b)

where ξ = ξ(T2) is a new function.
Note that the substitution of formulas (43) in (38) re-

sults in the identity. Thus, considering (29c)-(29f) and
(40)-(43), we have

B2 −B1 =
[
(λ3 − λ1)Γ−1

2 ξ + (λ4 − λ2)Γ−1
1 (1− ξ)

+
1
4

(1− 2ξ) cos δ
]
E0e

−sT2 , (43c)

a1a
2
2f1 − a2a

1
1f2 =

1
4

Γ−1
1 Γ−1

2 ξ(1− ξ)E3
0e
−3sT2 sin δ,

(43d)(
Γ2a

2
1 + Γ1a

2
2

)2
= E2

0e
−2sT2 . (43e)

Substituting (43c)-(43e) in (39), we are led to the dif-
ferential equation

d cos δ
dξ

+
1− 2ξ
ξ(1− ξ)

cos δ− 4(λ1 − λ3)
Γ2(1− ξ)

− 4(λ2 − λ4)
Γ1ξ

= 0.

(44)

Integrating equation (44) yields

G(δ, ξ) = ξ(1− ξ) cos δ − 2(λ1 − λ3)
Γ2

ξ2

+
2(λ2 − λ4)

Γ1
(1− ξ)2 = G0, (45)

where G0 = G(δ0, ξ0) is an arbitrary constant depending
on the initial magnitudes of δ0 = δ|T2=0 and ξ0 = ξ|T2=0 .

Relationship (45) is also the first integral of the set of
equations (29), in so doing by its physical meaning the
function G(δ, ξ) is the stream-function of the phase fluid
on the plane δ − ξ, since the velocities of displacement of
this fluid are determined as

vξ = ξ̇ = −1
2

Γ2E0
∂G

∂δ
exp(−sT2), (46a)

vδ = δ̇ =
1
2

Γ2E0
∂G

∂ξ
exp(−sT2). (46b)

Thus, in this case, we have a steady-state motion of the
system under consideration.

The detailed analysis of this case with numerical ex-
amples could be found in [4]. Based on the experimental
data for the Golden Gate suspension bridge [1], it has been
proved that “the nonlinear models with fractional deriva-
tive damping are more preferred over the models with inte-
ger derivatives for describing damping features of suspen-
sion bridges. The vibrating regimes investigated are com-
bined from two interacting processes: the process of energy
transfer and the process of damping” [4]. To illustrate the
interaction of these two processes, the method of vector di-
agrams has been suggested, which allows one to trace not
only the change in the energy of the whole system, but also
to follow the redistribution of the partial energy of the two
vibrating subsystems during this process.

One of the examples considered with due account for
damping in [2] and [4], and without damping in [12] has
been studied also in [10] without any references to [2], [4]
and [12], although the authors of [10] considered the exci-
tation of only one mode or the interaction of two modes as
it was carried out in [2], [4], [12], aa well as in the present
study.

D. The case of force driven vibrations at γ1 = γ2 = γ

Putting γ1 = γ2 = γ in (29c)-(29f) and substituting
these relations in (39), we have

dξ

dδ
= −E−2

[
Γ1Γ2a

2
1a

2
2E sin δ − fω−1

0 a1a
2
2Γ1Γ2 sinϕ1

]
×
[(

Γ2a
2
1 − Γ1a

2
2

)
cos δ + 4(λ1 − λ3)a2

1

+4(λ2 − λ4)a2
2 − fω−1

0 a−1
1 cosϕ1

]−1
. (47)
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When f = 0, we could obtain from (47) the known
equation [4]

dξ

dδ
= − ξ(1− ξ) sin δ

[
(1− 2ξ) cos δ − 4(λ1 − λ3)Γ−1

2 ξ

−4(λ2 − λ4)Γ−1
1 (1− ξ)

]−1
. (48)

Now imagine that at the initial instant of time a phase
fluid point locates on a certain stream-line and has the coor-
dinates δ0, ξ0. At the time T2 = 0, the force f begins to act
on the given mechanical system, and the phase point leaves
the stream-line and describes its own trajectory. To deter-
mine the angle, under which the phase fluid point leaves
the stream-line at the initial instant of time, we put T2 = 0
in (47) and consider formulas (43). As a result we obtain

dξ

dδ

∣∣∣
T2=0

=
[
E

3/2
0 ξ0(1− ξ0) sin δ0

−fω−1
0 (1− ξ0)ξ1/2

0 Γ1/2
2 sinϕ10

]{
E

3/2
0 [(1− 2ξ0) cos δ0

−4(λ1 − λ3)Γ−1
2 ξ0 − 4(λ2 − λ4)Γ−1

1 (1− ξ0)
]

+fω−1
0 ξ
−1/2
0 Γ1/2

2 cosϕ10

}−1

, (49)

where ϕ10 = ϕ1

∣∣
T2=0

.
Using the angle of inclination of the tangent to the tra-

jectory of the phase fluid point motion to the δ-axis, it is
possible to determine the character of vibrational process
of the given system being under the conditions of the in-
ternal and external resonances (4) at a time. This character
is influenced essentially by the magnitude of the external
vertical force amplitude f .

E. The case of free damped vibrations at γ1 6= γ2

Substituting (29c)-(29f) at f = 0 in (39) yields

dξ

dδ
= −E−2

[
Γ1Γ2a

2
1a

2
2E sin δ − 2Γ1Γ2(s1 − s2)a2

1a
2
2

]
×
[(

Γ2a
2
1 − Γ1a

2
2

)
cos δ + 4(λ1 − λ3)a2

1

+4(λ2 − λ4)a2
2 + 2(ψ1 − ψ2)

]−1
. (50)

At γ1 = γ2 = γ, formula (50) goes over into (48).
Imagine that at the initial instant of time a phase fluid

point locates on a certain stream-line and has the coordi-
nates δ0, ξ0. At the time T2 = 0, the increment ∆γ =
γ1 − γ2 6= 0 is imparted to the given mechanical system,
and the phase point leaves the stream-line and describes its
own trajectory. To determine the angle, under which the
phase fluid point leaves the stream-line at the initial instant
of time, we put T2 = 0 in (50) and consider formulas (43).
As a result we obtain

dξ

dδ

∣∣∣
T2=0

= ξ0(1− ξ0) [E0 sin δ0 − 2(s1 − s2)]

×
{
E0

[
(1− 2ξ0) cos δ0 − 4(λ1 − λ3)Γ−1

2 ξ0

−4(λ2 − λ4)Γ−1
1 (1− ξ0)

]
+ 2(ψ2 − ψ1)

}−1
. (51)

Thus, it has been found that as distinct to the case
γ1 = γ2 = γ when the fractional derivative favors damped
steady-state motions, the presence of fractional derivatives
of two different orders in equations (26) results, contrary to
the expectations, in the destabilization of all vibratory mo-
tions of the suspension combined system, i.e., quasistable
motion of the suspended combined system goes over into
the transient one.

This case was also discussed in [5] using the experi-
mental data for the Golden Gate suspension bridge [1].

IV. CONCLUSION

Nonlinear force driven coupled vertical and torsional
vibrations of a suspension bridge subject to the combina-
tion of external and internal resonances have been investi-
gated for the case when its damping features are described
by the fractional derivatives. From the above discussion the
following conclusions could be reached.

If the external force is of order of ε2 and the viscos-
ity coefficients are of order of ε, then it is possible to ob-
tain the approximate analytical solutions for the general-
ized displacements. As this takes place, the solution for
the vertical displacement x1 involves two parts: the first
corresponds to the damping vibrations with damping co-
efficients and nonlinear frequencies dependent on the frac-
tional parameters and describes the transient process, while
the second one is nondamping in character and describes
the steady-state regime, i.e., forced vibrations with the fre-
quency of the exciting force and with the phase difference
depending on the fractional parameter. The solution for the
torsional displacement x2 consists only from one term de-
scribing the transient process. Moreover, in the transient
processes, the damping coefficients and the frequencies of
nonlinear vibrations depend on the square of the exciting
force amplitude.

If the external force is of order of ε3 and the vis-
cosity coefficients are of order of ε2, then it is impossi-
ble to obtain the analytical expressions for the generalized
displacements x1 and x2, since the differential modula-
tion equations could be solved only numerically. How-
ever, in the case of absence of the external force and when
the orders of fractional derivatives are equal to each other
γ1 = γ2 = γ, the nonlinear set of equations describing
the vibratory motion possesses two first integrals, namely:
the integral of energy and the integral representing itself
the stream-function, along which phase fluid interpreting
the vibratory process moves on the phase plane δ − ξ. If
at some point in time an external force affects on the me-
chanical system or the orders of the fractional derivatives
begin to differ little in magnitude, then at this moment the
stream-lines of the phase fluid become unstable and disap-
pear at further instants of time according to formulas (49)
and (51).
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